
WELCOME TO PYTHON!
VARIABLES AND DATA TYPES
FUNCTIONS
COLLECTIONS
CONDITIONALS
LOOPS
DEBUGGING AND ERROR HANDLING

The slides are meant as visual support for the lecture.
They are neither a documentation nor a script.

Please do not print the slides.

Comments and feedback at n.meseth@hs-osnabrueck.de

WELCOME TO
PYTHON!

BACK

%!Welcome to Python%!

name = input("What's your name? ")

print(f"Hello {name}")

functions or commands

built-in functions functions from
built-in modules external modules

print()
input()
…

math.sqrt()
time.sleep()
sys.exit()
…

requests.get()
…

comments

Ask the user for their name
name = input("What's your name? ")

Greet the user
print(f"Hello {name}")

Ask the user for their name
name = input("What's your name? ")

print(f"Hello {name}") # Greet the user

’’’
a multi-line comment
for longer descriptions
’’’
print("hello, world")

arguments / parameter

Ask the user for their name
name = input("What's your name? ")

Greet the user
print(f"Hello {name}")

bugs

syntax errors

runtime errors

function’s return values

result = pow(2, 3)

VARIABLES AND
DATA TYPES

BACK

%!Variables and Data Types%!

result

pow(2, 3)result

pow(2, 3)result

8

exp = 4
result = pow(2, exp)

 = 4
result = pow(2,)exp

exp

exp = 4
result = pow(2, exp)
print(result)

constants

PI = 3.14159
UID = "ZeW"

naming variables

use_underscores_for_spaces
start_with_small_letter
only_0123456789_and_letters
english_and_speaking_names

operators

math

5 + 5

9 - 8

2 / 1

6 * 7

5 // 2

10 % 3

2**3

logic

2 == 1

2*2 > 1+3

2*2 >= 1+3

"A" < "B"

"A" < "B" and 2 == 1

"A" < "B" or 2 == 1

strings

== != > < >= <=
+
*
in / not in
[1] / [1:4]
strip()
capitalize()
title()

data types

integer

integer
float numeric

integer
float
boolean

numeric

integer
float
boolean
string

numeric

format strings

print(f"Hello {name}")

comments

step 1: determine exponent

step 2: calculate power

step 3: print result

problem solving → problem decomposition

step 1: determine exponent

step 2: calculate power

step 3: print result

step 1: determine exponent
exp = 4

step 2: calculate power

step 3: print result

step 1: determine exponent
exp = 4

step 2: calculate power
result = pow(2, exp)

step 3: print result

step 1: determine exponent
exp = 4

step 2: calculate power
result = pow(2, exp)

step 3: print result
print(result)

FUNCTIONS

BACK

%!Functions%!

create functions

def greet():

print("hello")

parameters

def greet(name):

print(f"hello {name}")

parameter default values

def greet(name="world"):

print(f"hello {name}")

returning results

returning results

def make_greeting(name):

greeting = f"hello {name}"

return greeting

calling functions

greeting = make_greeting("Mika")

greeting = make_greeting("Mika")

variable to store return value

COLLECTIONS

BACK

%!Collections%!

lists

fruits = ["apple", "banana", "cherry"]

fruits = ["apple", "banana", "cherry"]

fruits[0] # apple

fruits = ["apple", "banana", "cherry"]

fruits[0] # apple

fruits[1] # banana

fruits = ["apple", "banana", "cherry"]

fruits[0] # apple

fruits[1] # banana

fruits[2] # cherry

fruits = ["apple", "banana", "cherry"]

fruits[0] # apple

fruits[1] # banana

fruits[2] # cherry

fruits[1:2] # ["banana", "cherry"]

list operations

fruits.append("grape")

fruits.append("grape")

fruits.insert(1, "strawberry")

fruits.append("grape")

fruits.insert(1, "strawberry")

fruits.pop()

fruits.append("grape")

fruits.insert(1, "strawberry")

fruits.pop()

len(fruits)

fruits.append("grape")

fruits.insert(1, "strawberry")

fruits.pop()

len(fruits)

for fruit in fruits:

print(fruit) # print every fruit

CONDITIONALS

BACK

%!Conditionals%!

if <condition>:
…

if <condition>:
…

else:
…

if <condition>:
…

elif <condition>:
…

LOOPS

BACK

%!Loops%!

while loop

while <condition>:
…

for loop

for el in elements:
print(el)

for i in range(10):
print(i)

DEBUGGING AND
ERROR HANDLING

BACK

%!Debugging and Error Handling%!

