ORGANIZATION

DIGITAL TECHNOLOGIES

SENSORS

ACTUATORS

COMPUTER VISION

LARGE LANGUAGE MODELS

USER INTERFACES

NATURAL LANGUAGE PROCESSING
CLOUD SERVICES

DATABASES

#
#

The slides are meant as visual support for the lecture.
They are neither a documentation nor a script.

Please do not print the slides.

Comments and feedback at n.meseth@hs-osnabrueck.de

ORGANIZATION

ILIAS
Microsoft Teams

sessions

group work

examination

working environment

visual studio code
python
tinkerforge

git

DIGITAL
TECHNOLOGIES

input

a model for solving problems

» solution

> output

11

cyber physical
systems

artificial
intelligence

software
prototyping

12

cyber physical

systems

SEeNsSors

artificial
intelligence

software
prototyping

temperature
humidity

co2

uv light
ambient light
sound pressure
thermal image
camera

actuators

led
speaker
display
motor

13

cyber physical
systems

computer vision

artificial

intelligence

generative ai

software
prototyping

natural language
processing

14

cyber physical
systems

artificial

intelligence

computer vision

generative ai

software
prototyping

image classification
image segmentation
object recognition
object tracking

face recognition
face identification
emotion recognition
pose estimation

text recognition

natural language
processing

15

cyber physical
systems

computer vision

artificial

intelligence

software
prototyping

generative ai

natural language
processing

text generation
text summary
text analysis
image generation
image description
video generation
music generation

16

cyber physical
systems

computer vision

artificial

intelligence

generative ai

software
prototyping

natural language

processing

speech-to-text
text-to-speech
translation

17

cyber physical
systems

user interfaces

artificial
intelligence

software

prototyping

cloud services

databases

18

introductory example

19

visual studio code
programs
python

LEDs

large language models

22

speech-to-text

user interface

24

SENSORS

temperature / humidity
rgb led button

camera

thermal imaging camera
microphone

keyboard

26

#
#
#
#
#
#
#

temperature / humidity

th

BrickletHumidityV2(UID, ipcon)...

xS

th.get humidity()
th.get_temperature()

29

th.register callback(th.CALLBACK HUMIDITY, cb _humidity)
th.register callback(th.CALLBACK TEMPERATURE, ...)

30

th.set humidity callback configuration(250, False,

th.set _temperature_callback configuration(...)

X",

9, 0)

31

rgb led button

btn = BrickletRGBLEDButton(UID, ipcon)...

btn.set color(255, 0, 0)

34

btn.get button state()

35

btn.register callback(...)

36

camera

37

OpenCV

import cv2

38

Get video capture device (webcam)

webcam = cv2.VideoCapture(0)

39

Read a frame

success, frame

webcam.read()

40

Show the image from the frame

cv2.imshow("Webcam", frame)

41

Save the frame as .png

cv2.imwrite("screenshot.png", frame)

42

thermal imaging camera

43

OpenCV
Tinkerforge

44

ti = BrickletThermalImaging(UID, ipcon)
ti.set _image transfer_config(...)

img = ti.get high contrast image()

45

ti.register callback(...)

46

microphone

47

import pyaudio

48

Define recording parameters
FORMAT = pyaudio.palntl6
CHANNELS = 1

RATE = 44100

CHUNK = 1024

49

Get access to the microphone

audio = pyaudio.PyAudio()

50

Start listening

stream = audio.open(...)

51

Read a chunk of frames

stream.read(CHUNK)

52

Stop and close stream
stream.stop stream()

stream.close()

53

Terminate access to microphone

audio.terminate()

54

keyboard

55

import keyboard

56

L

0oo
0o
”UU
0o
/o

Define a callback function for a key
def record audio():

print("Recording audio...")

57

L

0oo
0o
”UU
0o
/o

Add key listener
keyboard.add hotkey("r", record audio)

58

L

0oo
0o
”UU
0o
/o

Wait until a specific key was pressed

keyboard.wait("esc"

59

ACTUATORS

rgb led
OLED display
speaker

61

#

rgb led

led = BrickletRGBLEDV2(UID, ipcon)
led.set rgb value(255, 0, 0)

63

OLED display

oled = BrickletOLED128x64V2(UID, ipcon)
oled.clear display()

oled.write line(0, 0, "Welcome!")

65

speaker

66

import simpleaudio as sa

67

o8
©.

Create a wave object from .wav-file and play it
wav = sa.WaveObject.from wave file("sound.wav")

wav.play().wait_done()

68

COMPUTER
VISION

._.?_. uuuuuu

finding images with oranges

70

Image source: Wikimedia

71

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Oranges_-_whole-halved-segment.jpg/800px-Oranges_-_whole-halved-segment.jpg

Image source: Wikimedia

Image source: Wikimedia

72

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Oranges_-_whole-halved-segment.jpg/800px-Oranges_-_whole-halved-segment.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/Spalding_Basketball.jpg/800px-Spalding_Basketball.jpg

what set of rules can solve this?

73

machine learning algorithms

74

data

rules

l

rule-based
program

P answer

75

data

data

dnNswers

rules

l

rule-based

program

» machine
learning

y

P answer

» rules

76

images in a computer

77

I/
[

e

G

7,
{

78

79

80

81

)
) o
~.~
!
= i ol
s
. x ol
: - -
=K .. -
—\ |
= | o H
v/ 3 \/M ‘,
: i EECN -
S i
= i
he
OI[

T
X VLN

R
Ik

T
X VLN

R
Ik

85

image classification

86

Q: Does an image belong to one or the other class
from a fixed set of classes?

87

Cat or Dog?

» model

| "Cat"

88

Cat or Dog?

» model

| "Cat"

» model

> "dog"

89

Google's teachable machine

https://teachablemachine.withgoogle.com

90

https://teachablemachine.withgoogle.com

pip install keras

pip install tensorflow==2.12.0

91

Load the classifier and class names
model = load model("my model.h5")
class _names = open("labels.txt", "r").readlines()

92

Convert the image tO 224 x 224
image = cv2.resize(image, (224, 224), interpolation=cv2.INTER_AREA)

Turn into a list of pixels
image = np.asarray(image, dtype=np.float32).reshape(l, 224, 224, 3)

Normalize each pixel's color value (-1/1)
image = (image / 127.5) - 1

93

Make a prediction for the class
prediction = model.predict(image)

Get the class with the highest confidence value
index = np.argmax(prediction)
class name = class names[index]

Get the confidence score for the predicted class
confidence score = prediction[@][index]

94

95

YOLO v8 Image Classification

https://docs.ultralytics.com/

96

https://docs.ultralytics.com/

pip install ultralytics

97

Load the classifier
from ultralytics import YOLO
model = YOLO("yolov8n-cls.pt")

98

Make a prediction
results = model('cat.jpg')

99

Show result
results[0].show()

100

Get the top result

top = results[0@].probs.topl

class _name = results[@].names[top]
print(class _name)

101

zero-shot image classification

102

Q: Which classes do you train your model on?

103

GP

-4 \ision

pip install openail

105

import openai API and set api key
from openai import OpenAl
os.environ["OPENAI API KEY"] = "..."
client = OpenAI()

106

define a suitable prompt for the task
prompt = "Classify the image into 'dog' or
only the word for the class of the image."

cat . Return

107

This function is needed to encode an image to base64 for OpenAl's API
def encode_image(image path):
with open(image_path, "rb") as image_file:
return base64.b6dencode(image _file.read()).decode('utf-8")

image path = "cat.webp"
image = encode image(image_ path)

108

response = client.chat.completions.create(
model="gpt-4-turbo",
messages = [
{ "role": "user", "content": [
{ "type": "text", "text": prompt },
{ "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{image}" } }
]
}
1,

max_tokens=300,

109

Show the answer of the classification
print(response.choices[0].message.content)

110

object detection

Q: Which objects are in the image and where?

112

Al

113

Al

114

YOLO v8 Object Detection

https://docs.ultralytics.com/

115

https://docs.ultralytics.com/

Load the detector
from ultralytics import YOLO
model = YOLO("yolov8n.pt")

116

Make a prediction one each frame
results = model(frame)

Annotate frame
annotated frame = results[0].plot()

117

Q: Which objects do you teach your model to
recognize?

119

zero-shot object detection

"Simple Open-Vocabulary Object Detection with
Vision Transformers”

https://arxiv.org/abs/2205.06230

121

https://arxiv.org/abs/2205.06230

Load the open world detector
from ultralytics import YOLO
model = YOLO("yolov8s-world.pt")

122

Define custom objects to look for
model.set classes(["person with glasses™])

123

Make a prediction one each frame
results = model(frame)

Annotate frame
annotated frame = results[0].plot()

124

optical character
recognition (OCR

Getranke
HOFFMANN

B. Bobzin
Bramscher Strafe 159
49086 0 SNABRUC

Mo-Fr.08:00-19:30 Uhr Sa.08:00-19:00 Uhr

Te 1/684726

26.04.24 09:0/ 2347 00002 01 #306521

6x 20er KASTEN & 9

#133075 Salvus Apfelschorle 0,33 79.74
5

#000901 Pfandflasche 120x0.15
#000905 Leerkiste 6x1.50

Bx 20er KASTEN a 7.79
#133734 Salvus mit Kribbel 0,33L 62.32
#000901 Pfandflasche 160x0.15 24.00
#000905 Leerkiste 8x1.50 12.00 1

idsumme € 205 .06

davon Ware EUR 3 14
davon Pfand EUR ¥ 63
abzgl. Riickpfand EUR 8 0.00

wSteuer Netto ' Brutto
19.00% 172.32 4 205,06 1

Kartenzahlung EUR : 205.06
Kartenart : Visa Debit

Beleghr : 6988

PAN : BiRRR#BBHR0TOA

Kartenfolgenr. : 0000

VU-Nr. : 228165299

zuriick EUR] 0.00

6%k Keine P A Y B A C K Karte? #x++x

Dein PAYBACK Vorteil fir diesen Einkauf
wdren 71°P gewesen!
Hier PAYBACK Karte mitnehmen oder auf
getraenke-hoffmann.de/payback anmelden
B e e e e e

: 047 225 19041 (#)
vielen Dank
far IThren Einkauf!

125

tesseract

126

GP

-4 \ision

define a suitable prompt for the task
prompt = "Extract all food and beverage items with their

quantity and price from this receipt into a JSON list. The
receipt is in German."

128

response = client.chat.completions.create(

mode1="-",

response_format={ "type": "json_object" },
messages = [
{ "role": "user", "content": [

{ "type": "text", "text": prompt },
{ "type": "image url", "image url": { "url": f"data:image/jpeg;base64,{image}" } }
]
}
1,

max_tokens=300,

129

LARGE LANGUAGE
MODELS

what has been said so far?
(history + prompt)

131

what has been said so far? prediction of next token based on
(history + prompt) . learnt probability distribution

132

what has been said so far? prediction of next token based on
(history + prompt) . learnt probability distribution

+

(randomness)

(KX

what has been said so far? prediction of next token based on
(history + prompt) . learnt probability distribution

+

(randomness)

+
(filter)

(discriminating, insulting content)

134

what has been said so far? prediction of next token based on
(history + prompt) . learnt probability distribution

+

(randomness)

+
(filter)

(discriminating, insulting content)

next word (token) g

135

what has been said so far? prediction of next token based on

(history + prompt) . learnt probability distribution
+
(randomness)
| ;
(filter)

(discriminating, insulting content)

next word (token) g

136

PROMPTING

https://www.promptingguide.ai/

137

https://www.promptingguide.ai/

Language =z°o
Prompt HModel go/-]—b[Answer

138

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

139

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

Explain the binary number system.

140

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

Explain the binary num@system.

start simple

141

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

You are a friendly tutor and your
task is to explain complex
concepts as simple as possible.

Explain the binary number system.

142

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

You are a friendly tutor and your
task is to explain complex
concepts as simple as possible.

Your answers are never longer
than 10 sentence.

Explain the binary number system.

143

ZERO-SHOT PROMPTING

144

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

Classify the text into neutral,
negative or positive.

Text: "What a great dinner!"

Sentiment:

145

elements of a prompt

<instruction>
<context>
<input data>

<output indicator>

example prompt

Classify the text into neutral,
negative or positive.

Text:("What a great dinner!@

Sentiment:

this will be replaced with

data later...
146

FEW-SHOT PROMPTING
IN-CONTEXT LEARNING

147

examples in the context to learn from

Extract all references to countries and their continent in the following text

using the format from the examples below.

Example 1: "They played the team called 'Die Mannschaft' in the world cup final"

Correct answer: Germany, Europe

Example 2: "The Three Lions once again lost to Germany in a semi final"

Correct answer: England, Europe, Germany, Europe

Text: "The Selecao was destroyed 1:7 by the DFB selection in their home stadium."

Answer:

148

examples in the context to learn from

Extract all references to countries and their continent in the following text

using the format from the examples below.

Example 1: "They played the team called 'Die Mannschaft' in the world cup final"
-
Correct answer‘:LGer‘many, Europe)

Example 2: "The Three Lions once again lost to Germany in a semi final"

pn—

Correct answer:\England, Europe, Germany, Europe)

Text: "The Selecao was destroyed 1:7 by the DFB selection in their home stadium."

Answer:

149

more prompting strategies

chain-of-thought (CoT)
self-consistency

generate knowledge prompting
prompt chaining (subtasks)
tree-of-thoughts (ToT)
retrieval-augmented-generation (RAG)

150

OpenAl ©®

pip install openai

152

from openai import OpenAl
import os

os.environ["OPENAI_API KEY"] = "FNCURIEPIRE

client = OpenAI()

153

define a system message
system_message = """
You are a world-famous 5-star chef. Based on ingredients the user has at home,

you suggest easy-to-cook recipes.

154

define a prompt for the task
prompt =
Suggest a recipe for lunch.

List of ingredients:

Recipe:

butter
eggs
flour
salt
milk

155

response = client.chat.completions.create(

model="[ERlNN" ,

messages = [

{"role": "system", "content": system message },
{"role": "user", "content": prompt },]
}

1,
max_tokens=2000

156

USER
INTERFACES

streamlit

https://docs.streamlit.io/ # official documentation
https://streamlit.io/components # third-party extensions

158

https://docs.streamlit.io/
https://streamlit.io/components

pip install streamlit

159

- Home.py
- pages/
- 1 Speech.py
- 2_Webcam.py
- 3_Microphone.py
- 1ib/
- speech_to_text.py
- text_to_speech.py

- vision.py

160

entry point to our Ul

Home.py

- pages/
- 1 Speech.py
- 2_Webcam.py
- 3_Microphone.py

- 1ib/
- speech_to_text.py
- text_to_speech.py

- vision.py

161

entry point to our Ul

Home. py

—— more pages in our app

1 Speech.py

- 2_Webcam.py
- 3_Microphone.py
- 1lib/

- speech_to_text.py
- text_to_speech.py

- vision.py

162

Home. py
pages/

1 Speech.py
- 2_Webcam.py
3_Microphone.py

speech_to_text.py
text_to_speech.py

vision.py

entry point to our Ul

more pages in our app

our custom functions we'd like to
use from our Ul

163

Home. py

import streamlit as st

st.title("My first UI")
st.write("This is a simple UI for prototyping our application.™)

name = st.text input("Enter your name")

if st.button("Greet me"):
st.write(f"Hello {name} & ")

sz

Home. py

My first Ul

This is a simple Ul for prototyping our application.

import streamli

st.title("My fi
st.write("This

Nicolas

Greet me

name = st.text Hello Nicolas B!

if st.button("G
st.write(f"

165

1 Speech.py

import streamlit as st
from pages.lib.text to speech import text to speech

st.title("Speech demo")
st.write("Enter a text and it will be converted to speech.")

text = st.text_input("Enter some text")
voice = st.selectbox("Select a voice", ["alloy", ... "shimmer"])

if st.button("Turn to speech"):
audio_file = text_to_speech(text, voice=voice)
st.audio(audio file.as posix(), format="audio/mpeg")

166

1 Speech.py

import streamlit as st

from pages.lib.text to speech import text_to_spe;;;z) from lib/text_to_speech.py

st.title("Speech demo")
st.write("Enter a text and it will be converted to speech.")

text = st.text_input("Enter some text")
voice = st.selectbox("Select a voice", ["alloy", ... "shimmer"])

text, voice=voice)
st.audio(audio T . (), format="audio/mpeg")

167

lib/text to_speech.py

from openai import OpenAIl

import os
os.environ["OPENAI_API_KEY"] = "..."
client = OpenAI()

def text to speech(text, voice="alloy"):
speech_file path = Path(__file).parent / "speech.mp3"
response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text

response.write to file(speech file path)
return speech_file_path

168

lib/text to_speech.py

from openai import OpenAl setup OpenAl

import os API
os.environ["OPENAI_API_KEY"] = "..."

client = OpenAI()

def text to speech(text, voice="alloy"):
speech_file path = Path(__file).parent / "speech.mp3
response = client.audio.speech.create(
model="tts-1",
voice=voice,
input=text

response.write to file(speech file path)
return speech_file_path

169

lib/text to_speech.py

from openai import OpenAl setup OpenAl

import os API
os.environ["OPENAI_API_KEY"] = "..."

client = OpenAI()

def text to speech(text, voice="alloy"): define
speech_file_path = Path(__file__).parent / "speech.mp3" custom
response = client.audio.speech.create(function

model="tts-1",
voice=voice,
input=text

response.write to file(speech file path)
return speech_file_path

170

2 _Webcam.py

import streamlit as st
from pages.lib.vision import ask gpt4o
st.title("Video camera test")
picture = st.camera_input("Take a picture")
if picture:

st.image(picture)

answer = ask_gptd4o("What is in this picture?", picture)
st.write(answer)

171

2 _Webcam.py

import streamlit as st

from pages.lib.vision import‘ask_gpt4o) from lib/vision.py

st.title("Video camera test")

picture = st.camera_input("Take a picture")

if picture:
st.image(pi
answer =(ask_gptd4o(YWhat is in this picture?", picture)
st.write(answer)

172

lib/vision.py

from openai import OpenAIl
import os
os.environ["OPENAI_API KEY"] = "..."
OpenAI()

client

def encode_image(image_buffer):

def ask_gptdo(prompt, image_buffer):

image

encode_image(image_buffer)

response = client.chat.completions.create(
model="gpt-40",
messages=[

{

}

"role": "user", "content": [

1s

{ "type": "text", "text": prompt },

{ "type": "image_url", "image_url": { "url":

return response.choices[@].message.content

f"data:image/jpeg;base64,{image}" } }

173

lib/vision.py

from openai import OpenAIl

import os
os.environ["OPENAI_API KEY"] = "..."
client = OpenAI()

def encode_image(image_buffer):

setup OpenAl
API

def ask_gptdo(prompt, image_buffer):
image = encode_image(image_buffer)
response = client.chat.completions.create(
model="gpt-40",
messages=[

{
"role": "user", "content": [
{ "type": "text", "text": prompt },
{ "type": "image_url", "image_url": { "url":
]J
}
]
)

return response.choices[@].message.content

f"data:image/jpeg;base64,{image}" } }

define
custom
function

174

3_Microphone.py

import streamlit as st
from streamlit mic_recorder import mic_recorder
from pages.lib.text_to_speech import speech_to_text

st.title("Microphone test")

def callback():
if st.session state.my recorder output:
audio = st.session_state.my_recorder_output
text = text to speech(audio)
st.success(text)

audio = mic_recorder(key="my_recorder', callback=callback)

175

3_Microphone.py

pip install streamlit-mic-recorder

import streamlit as st
from streamlit mic_ recorder import(mic_recorder)
from pages.lib.text_to_speech import speech_to_text

st.title("Microphone test")

def callback():
if st.session state.my recorder output:
audio = st.session_state.my_recorder_output
text = text to speech(audio)
st.success(text)

audio = mic_recorder(key="my_recorder', callback=callback)

176

3_Microphone.py

pip install streamlit-mic-recorder
import streamlit as st
from streamlit mic_recorder import(mic_recorder
from pages.lib.text to speech import (speech to text from lib/speech_to_text.py

st.title("Microphone test")

def callback():
if st.session state.my recorder output:
audio = st.session_state.my_recorder_output
text =(text_to_speech}audio)

st.success(text)

audio = mic_recorder(key="my_recorder', callback=callback)

177

lib/speech _to text.py

from openai import OpenAl
import os
import io

os.environ["OPENAI_API KEY"] = "..."
client = OpenAI()

def speech to text(audio):
audio bio = io.BytesIO(audio['bytes'])
audio_bio.name = 'audio.mp3’

transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio bio

)

return transcription.text

178

lib/speech _to text.py

from openai import OpenAl

import os setup OpenAl
import io API

os.environ["OPENAI_API KEY"] = "..."
client = OpenAI()

def speech to text(audio):
audio bio = io.BytesIO(audio['bytes'])
audio_bio.name = 'audio.mp3’

transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio bio

)

return transcription.text

define
custom
function

179

