

NLP TEXT REPRESENTATION

BOOK RECOMMENDATION

Lane, Hobson, et al. *Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python.* Manning Publications Co, 2019.

You can find the example code in this notebook.

A **bag of words** is a dictionary with counts of the occurrence of the single words in a text.

ver occ	b, urences		
rom	1		
ted	_top_verbs		
nere			
you	tube_id = "Qy5	A8dVYU3k"	
(2)	Spark Jobs		
• (2)	Spark Jobs	occurences 🔺	
 (2) 1 	Spark Jobs	occurences 🔺 31	
(2) 1 2	Spark Jobs verb	occurences A 31 5	
(2) 1 2 3	Spark Jobs verb	occurences 31 5 4	
 (2) 1 2 3 4 	Spark Jobs verb wander turn focus work	occurences 31 5 4 4 4	

{

"wander": 31,
"turn": 5,
"focus": 4,
"work": 4,
"call": 3

. . .

Prof. Dr. Nicolas Meseth | Twitter | Instagram | YouTube

Instead of raw counts, it is useful to calculate a relative occurrence to the length of the text. This is called the normalized term frequency.

%sql				
selec	t			
ver	b,			
occ	urences / tota	l_verbs as norm_term_freq		
from				
ted	_top_verbs ttv			
inn	er join (
s	elect			
	youtube_id,			
	sum(occurence	s) as total_verbs		
f	rom			
	ted_top_verbs			
g	roup by			
	youtube_1d			
) s	<pre>youtube_id on s.youtube_</pre>	id = ttv.youtube_id		
) s where	<pre>youtube_1d on s.youtube_</pre>	id = ttv.youtube_id		
) s where ttv	<pre>youtube_id on s.youtube_id =</pre>	id = ttv.youtube_id "QySA8dVYU3k"		
) s where ttv order	<pre>youtube_id on s.youtubeyoutube_id = by occurences</pre>	id = ttv.youtube_id "QySA8dVYU3k" desc		
) s where ttv order (3)	<pre>youtube_1d on s.youtubeyoutube_id = by occurences Spark Jobs</pre>	id = ttv.youtube_id "QySA8dVYU3k" desc		
) s where ttv order ▶ (3)	<pre>youtube_id on s.youtube_ .youtube_id = by occurences Spark Jobs verb</pre>	id = ttv.youtube_id "Qy5A8dYVU3k" desc norm_term_freq		
) s where ttv order) (3)	youtube_id on s.youtube_ .youtube_id = by occurences Spark Jobs verb wander	Id = ttv.youtube_1d ogyskadVVU3k" desc norm_term_freq 0.23946153846153847		
) s where ttv order (3)	youtube_id on s.youtube_ .youtube_id = by occurences Spark Jobs verb wander turn	Id = ttv.youtube_1d "Qy5ABdVVU3k" desc 0.23846153846153847 0.03846153846153846		
) s where ttv order > (3) 1 2 3	youtube_id on s.youtube_ .youtube_id = by occurences Spark Jobs verb wander turn focus	Id = ttv.youtube_1d "QySA8dVVU3k" desc norm_term_freq 0.23846153846153847 0.030546153846153846 0.030576923077		
) s where ttv order (3) 1 2 3 4	youtube_id on s.youtube_ .youtube_id = by occurences Spark Jobs verb wander turn focus work	Id = ttv.youtube_1d Oyy58adVVU3k** desc norm_term_freg 0.338461538461 0.33076923076923077 0.3366923076923077		

{

. . .

"work": 0.2384,
"turn": 0.0384,
"focus": 0.0307,
"work": 0.0307,
"call": 0.0230

- Good basis for rule-based analysis, such as sentiment, topic identification, spam-filters
- <u>Not</u> suitable as input for machine learning algorithms; they require numeric values

How can we represent text numerically?

The output (prediction) is numeric, too

ML models like neural networks are purely mathematical objects and require numeric input

ONE HOT ENCODED VECTORS SPARSE REPRESENTATION

A one hot encoded vector is a

sparse vector with only **0** and a single **1** for the index of the word it represents.

"This is my absolute undisputable favorite tea right now" The length of each vector depends on the size of the vocabulary. Large vectors are >99% filled with zeroes, which makes them inefficient.

absolute favorite is my now right tea this undisputable

A **word embedding** is the representation of a word through a vector of numbers (floats).

Vectors of contextually similar words are closer to each other in the euclidean space than others. Word embeddings are learned using a machine learning algorithm such as word2vec

doc = nlp("This is my absolute undisputed favorite tea right now.");
print("The token '{}' has the following word2vec vector embedding:".format(doc[3].text
doc[3].vector

The token 'absolute' has the following word2vec vector embedding: Out[112]: array([-1.4459e-01, 2.2050e-01, 8.6909e-02, 3.3820e-01, 2.2789e-01, -2.4581e-01, 1.3967e-01, 2.6703e-01, 9.2204e-02, 1.6055e+00, 8.6824e-02, 1.7958e-01, -2.6495e-01, 6.3712e-01, 3.9218e-01, -2.6489e-01, -4.7509e-01, 1.5260e+00, 9.0911e-02, 4.9902e-01, -1.4884e-01, -7.6880e-01, 1.4809e-01, 3.5931e-02, -6.2046e-02, -2.8647e-01, 1.9036e-01, 5.6531e-02, 1.1770e-02, 7.0728e-02, 2.9888e-01, 6.4778e-01, 2.2893e-01, 1.0843e+00, -1.2830e-01, -3.7705e-01, -1.8517e-01, -2.4000e-01, -1.0283e-01, -3.6733e-01, 1.3703e-01, -4.2059e-02, -2.1249e-01, 3.4027e-01, 1.7061e-01, -8.6444e-02, 2.2293e-02, 5.2327e-01, -2.5780e-01, -1.0093e-01, 1.8023e-01, 4.0808e-01, -1.6114e-01, -8.7858e-02, 4.2435e-01, 1.3158e-03, -2.1900e-01, -8.7514e-02, 1.5678e-01, -1.5575e-01, -7.5321e-03, 2.8298e-01, -2.2250e-01, -2.2584e-01, -1.0050e-01, 3.3866e-01, 3.1441e-01, -2.1194e-01, 2.4665e-02, -3.3567e-01,

WORD EMBEDDINGS LEARNING THE VECTORS

WORD EMBEDDINGS VIDEO RECOMMENDATION

Prof. Dr. Nicolas Meseth | Twitter | Instagram | YouTube

WORD EMBEDDINGS

EXAMPLE spaCy

spaCy's medium English model has a **vocabulary of > 700,000 words** with vector embeddings.

A single vector has 300 dimensions

```
doc = nlp("This is my absolute undisputed favorite tea right now.");
print("The token '{}' has the following word2vec vector embedding:".format(doc[3].text))
print("Each vector has {} dimensions".format(len(doc[3].vector)))
doc[3].vector
```

```
Each vector has 300 dimensions

Out[117]: array([-1.4459e-01, 2.2050e-01, 8.6909e-02, 3.3820e-01, 2.2789e-01,

-2.4581e-01, 1.3967e-01, 2.6703e-01, 9.2204e-02, 1.6055e+00,

8.6824e-02, 1.7958e-01, -2.6495e-01, 6.3712e-01, 3.9218e-01,

-2.6489e-01, -4.7509e-01, 1.5260e+00, 9.0911e-02, 4.9902e-01,

-1.4884e-01, -7.6880e-01, 1.4809e-01, 3.5931e-02, -6.2046e-02,

-2.8647e-01, 1.9036e-01, 5.6531e-02, 1.1770e-02, 7.0728e-02,

2.9888e-01, 6.4778e-01, 2.2893e-01, 1.0843e+00, -1.2830e-01,

-3.7705e-01, -1.8517e-01, -2.4000e-01, -1.0283e-01, -3.6733e-01,

1.3703e-01, -4.2059e-02, -2.1249e-01, 3.4027e-01, 1.7061e-01,
```

```
import spacy
nlp = spacy.load("en_core_web_md")
vocab_size = len(nlp.vocab.strings)
print("The Englisch model in medium size has a vocabulary of {} words.".format(vocab_size))
n_keys = nlp.vocab.vectors.n_keys
print("The Englisch model in medium size has {} unique word embeddings (vectors)".format(n_keys))
The Englisch model in medium size has a vocabulary of 701570 words.
The Englisch model in medium size has 684830 unique word embeddings (vectors)
```

WORD EMBEDDINGS SIMILARITY

With word embeddings, we can calculate **similarities** between words and documents.

```
tea = nlp("I love tea")
coffee = nlp("I love coffee")
pizza = nlp("I love pizza")
pasta = nlp("I love pasta")
```

```
print("Tea and coffee: {}".format(tea.similarity(coffee)))
print("Tea and pizza: {}".format(tea.similarity(pizza)))
print("Tea and pasta: {}".format(tea.similarity(pasta)))
print("Pizza and pasta: {}".format(pizza.similarity(pasta)))
```

Tea and coffee: 0.9411059275089753 Tea and pizza: 0.8494171567369873 Tea and pasta: 0.8388414815173865 Pizza and pasta: 0.9358318464113806

WORD EMBEDDINGS

ARITHMETIC

We can even do arithmetic based on learned vector embeddings!

King - Man + Woman = ?

WORD EMBEDDINGS ARITHMETIC

The relative position of "King" and "Queen" in the multidimensional vector space is similar to the one of "Man" and "Woman".

King - Man + Woman = Queen

BUT: The same words have the same vector embeddings, no matter the context :-(

```
city = nlp("Berlin is the capital of Germany.")
money = nlp("The firm needed more capital to invest.")
print(city[3])
print(money[4])
print(city[3].similarity(money[4]))
```

capital capital 1.0 The word "capital" can have two

meanings; static word embeddings do not account for context.

Long short-term memory (LSTM) networks, sequence-to-sequence models and attention-based transformer networks take context into account and extend the NLP capabilities.

Transformer networks became particularly famous through the release of **BERT** in 2019 and <u>GPT-3</u> in 2020

GPT-3 facts:

> 170 billion parameters

~ 500 billion tokens of training data~ 4.7 million USD training costs